# МОНИТОРИНГ ТЕМПЕРАТУРЫ АТМОСФЕРЫ НА РАЗНЫХ ВЫСОТАХ ПО УГЛОВОМУ СПЕКТРУ МЮОНОВ

**О**.В.Белоносова<sup>1</sup>, А.В.Белов<sup>2</sup>, В.В.Борог<sup>1</sup>, А.С.Давыдов<sup>1</sup>, Г.М.Крученицкий<sup>3</sup>, С.П.Перов<sup>3</sup>, В.Г.Янке<sup>2</sup>

<sup>1</sup>Московский инженерно-физический институт (государственный университет) <sup>2</sup>Институт земного магнетизма, ионосферы и распространения радиоволн <sup>3</sup>Центральная аэрологическая обсерватория

Разработан и реализован метод непрерывного контроля изменения вертикального поля температуры от поверхности земли до стратосферных высот на фиксированных уровнях по вариациям спектра мюонов в широком диапазоне зенитных углов. Сопоставление с прямыми измерениями на шарах-зондах (полеты через 12-часовые отрезки времени) дает удовлетворительное согласие практически на всех 9-ти уровнях диапазона высот: от 900 до 100 мбар, с шагом 100 мбар. Методика проверена для различных времен года на 2-х недельных отрезках времени.

#### Введение

Дистанционное изучение поведения температуры на разных высотах атмосферы, с использованием метеорологической зависимости интенсивности космического излучения, было начато более 30 лет назад. В работе [1] применялось три установки с разными порогами по энергии частиц: нейтронный монитор и два детектора мюонов, регистрирующих останавливающиеся и проникающие мюоны. По флуктуациям интегральных спектров частиц получено поведение температуры на трех разных высотах в зависимости от времени. Результаты работы свидетельствовали о возможности раздельного учета барометрических и температурных эффектов:

$$\Delta N(t) / N = -\beta_{T} \Delta T - \beta_{P} \Delta P, \qquad (1)$$

где  $\Delta N(t)/N$  - временная вариация интенсивности частиц;  $\Delta T$  и  $\Delta P$  - изменения среднемассовой температуры и полного давления на уровне наблюдения;  $\beta_T$  и  $\beta_P$  – усредненные температурный и барометрический коэффициенты. В работе [2] предложена методика, в которой с помощью одной установки, измеряющей спектр мюонов  $N(\theta)$  в большом интервале зенитных углов  $\theta$ , можно проследить за вариацией вертикального разреза температурного поля вплоть до стратосферных высот:

$$\delta N(h_0, \theta) / N(h_0, \theta) = \int_0^{h_0} (W_T(\Delta \varepsilon, h, h_0, \theta) \delta T(h)) dh , \qquad (2)$$

где:  $W_T(\epsilon,h,h_0,\theta)$  – дифференциальный температурный коэффициент, зависящий от высоты слоя атмосферы h, зенитного угла  $\theta$  вдоль траектории частиц и уровня наблюдения  $h_0$ ;  $\Delta \epsilon$  - энергетический порог регистрации мюонов. Если считать, что функция  $W_T$  априорно известна, то значения T(h) можно найти из решения обратной задачи. Полномасштабно эта методика оставалась не реализованной более 30 лет, вплоть до настоящего времени.

#### Методика исследования

Для практического применения методики [2] использован годоскоп МИФИ [3] площадью 9 м<sup>2</sup>, который непрерывно измеряет угловой спектр мюонов N( $\theta, \phi$ ) в широком диапазоне зенитных и азимутальных углов:  $0 \le \theta \le 60^{0}$  и  $0 \le \phi \le 360^{0}$  с точностью  $1-2^{0}$ . Уровень наблюдения –  $h_{0} = 1030$  г/см<sup>2</sup> под фильтром, толщиной 2 мвэ; энергетический порог

регистрации  $\Delta \varepsilon \approx 400$  МэВ. Для этих условий имеются рассчитанные значения величин  $W_T(\varepsilon,h,h_0,\theta)$  [2]. В дальнейшем они будут обозначаться как  $W_T(h,\theta)$ . При решении задачи вся атмосфера условно разбивается на отдельные геопотенциальные слои толщиной  $\Delta h=100$  г/см<sup>2</sup>, в которых проводится оценка флуктуаций  $\Delta T$ . Выражение (2) для разных углов преобразуется в систему линейных алгебраических уравнений, где интегрирование заменяется суммированием по различным слоям атмосферы толщиной  $\Delta h$ :

$$\begin{cases} \Delta N(\theta_1) / N(\theta_1) - \beta_p \Delta P = W_T(h_1, \theta_1) \Delta T(h_1) \Delta h_1 + \dots + W_T(h_m, \theta_1) \Delta T(h_m) \Delta h_m \\ \dots \\ \Delta N(\theta_n) / N(\theta_n) - \beta_p \Delta P = W_T(h_1, \theta_n) \Delta T(h_1) \Delta h_1 + \dots + W_T(h_m, \theta_n) \Delta T(h_m) \Delta h_m \end{cases}$$
(3)

Индекс m соответствует отдельному слою атмосферы, n – диапазону зенитных углов. В систему (3) введена интегральная поправка на учет барометрического эффекта в среднем, где  $\beta_P = 0.15 \% \text{ мбар}^{-1}$ . Значения P ежеминутно измерялись с точностью 0,1 мбар.

Экспериментальные данные  $N(\theta)$  были сгруппированы по углам так, чтобы, вопервых, отдельные угловые интервалы не "соприкасались" между собой. Это возможно уменьшит влияние соседних слоев атмосферы друг на друга и снизит корреляционный эффект в уравнениях (3). Во-вторых, значения  $N(\theta)$  должны иметь приблизительно равную величину во всех интервалах, что обеспечивает одинаковую статистическую точность результатов. Для увеличения точности угловые спектры мюонов берутся за 2-х часовые интервалы времени. Величины  $N(\theta)$  получены суммированием распределения  $N(\theta, \phi)$  по углу  $\phi$  в пределах 360<sup>0</sup>, из-за отсутствия азимутальной зависимости углового спектра мюонов при высокой энергии [3].

## Результаты и обсуждение

В эксперименте, в режиме реального времени изначально регистрируются 1минутные матрицы пространственного распределения интенсивности мюонов  $N_{ik}(t)$ , где каждой паре индексов (ik) соответствует значение углов ( $\theta, \phi$ ) с разрешением 1-2 градуса [4]. Поэтому выборка  $N(\theta)$  для каждого интервала  $\Delta \theta = \theta_{n+1} - \theta_n$  получается из кольца матричных данных  $N_{ik}$ . На рис.1 приведен фрагмент матрицы и расположение одного из таких колец. Видно, что практически все ячейки, находящиеся на границах кольца, входят в него лишь частично. В этом случае, число мюонов из пограничной ячейки берется пропорционально площади, попадающей в кольцо.



Рис.1. Схема учета интенсивности мюонов для разных ячеек матрицы. Заштрихованная область – фрагмент кольца с множеством ячеек для интервала углов  $\theta_{n+1} - \theta_n$ . 1 – внутренняя ячейка кольца (интенсивность учитывается полностью), 2 – пограничная ячейка (интенсивность пропорциональна заштрихованной части площади ячейки).

Всего рассматривалось 9 слоев атмосферы, средняя высота которых h = 900, 800, ...100 г/см<sup>2</sup>. Было взято 10 угловых интервалов по зенитным углам. Ниже (табл.)

приведены отдельные интервалы углов, их средние значения и характерная 2-х часовая статистика счета мюонов. Ширина всех интервалов, за исключением первого, составляла 3<sup>0</sup>, а угловые расстояния между соседними интервалами были равны 2<sup>0</sup>.

| Номер     | Интервал углов | Средний угол | средняя                 |
|-----------|----------------|--------------|-------------------------|
| Интервала | Δθ, градус     | <θ>, градус  | статистика, $N(\theta)$ |
| 1         | 0 - 7          | 3,5          | 104580                  |
| 2         | 9-11           | 10           | 89460                   |
| 3         | 14 – 16        | 15           | 116200                  |
| 4         | 19 – 21        | 20           | 133530                  |
| 5         | 24 - 26        | 25           | 141900                  |
| 6         | 29 - 31        | 30           | 137280                  |
| 7         | 34 - 36        | 35           | 119480                  |
| 8         | 39 - 41        | 40           | 103250                  |
| 9         | 44 - 46        | 45           | 78130                   |
| 10        | 49 - 51        | 50           | 53520                   |

*Таблица. Зависимость интенсивности мюонов N(θ) от интервалов зенитных углов θ.* 

Система линейных уравнений (3) преобразовывалась для определения значений  $\Delta T(h)$ . Поскольку число неизвестных ( $\Delta T$ ) меньше числа уравнений (по угловым интервалам  $\theta$ ), то система решалась методом наименьших квадратов. На рис.2 приведены результаты определения вариаций температуры атмосферы  $\Delta T(h)$  для двух стратосферных высот (100 и 200 мбар) за 2-х недельный период непрерывных измерений. В это время магнитное поле Земли было достаточно спокойным и не требовалось учитывать магнитосферные поправки, влияющие на интенсивность мюонов.



Рис.2. Вариации температурного поля на геопотенциальных уровнях стратосферы: 100, 200 мбар. Сплошная линия (1) - данные, полученные по вариациям углового спектра мюонов за 2-часовые интервалы и сглаженные методом скользящего среднего. Пунктирная линия с точками (2) - прямые измерения температуры с помощью шаровзондов через 12-ти часовые интервалы. Ось х – календарное время (в сутках) с 15 по 31 мая 1998 г. Ось у – изменения температуры (градус) на фиксированных высотах. Прямые измерения температурного поля получены с помощью шаров-зондов, регулярно запускаемых ЦАО Росгидромета в Долгопрудном (ближнее подмосковье). Полеты совершались регулярно дважды в сутки (00 и 12 часов по UT).

На рис.3 приведены аналогичные результаты по вариациям температурного поля для того же временного отрезка, относящиеся к тропосфере (глубина 600 и 900 мбар).



Рис.3. Вариации температурного поля на двух уровнях тропосферы: 600 и 900 мбар. (1) - данные, полученные по вариациям углового спектра мюонов. (2) - прямые измерения температуры с помощью шаров-зондов. Ось х – календарное время с 15 по 31 мая 1998 г. Ось у – изменения температуры (градус).

Сопоставление динамики температурного поля на всех других высотах (300, 400, 500, 700 и 800 мбар) дает аналогичное согласие с прямыми измерениями. В глубине атмосферы (800, 900 мбар) расхождение увеличивается. Для проверки устойчивости результата были изменены условия обработки - между соседними угловыми интервалами исключался промежуток. Результаты по  $\Delta T$  изменяются мало. При обработке данных интенсивность мюонов не исправлена на модуляцию потока первичного космического излучения.

### Заключение

Впервые показано практически, что прецизионные измерения дифференциального углового спектра мюонов в широком диапазоне углов позволяют проводить непрерывный мониторинг вертикального поля температуры атмосферы вплоть до стратосферных высот.

Работа выполнена при частичной поддержке РФФИ (гранты 03-02-17313, 02-05-64790), на уникальной установке "Мюонный годоскоп" (рег. № 06-11, Минпромнаука РФ).

## Список литературы

- 1. Y. Miyazaki, M. Wada // Acta phys. Acad. Sient. Hung. 1970. V.29. Suppl. 2. P. 591.
- 2. Л.И.Дорман // Метеорологические эффекты космических лучей. АН СССР. М. 1972.
- 3. В.В.Борог и др. // Изв. РАН. 1997. Сер. физ. Т.61. № 6. С.1256.
- 4. В.В. Борог и др. // Изв. РАН. 2003. Сер. физ. Т.67. №4. С.515.